
AA II0 DUFENU3 MAPPING ASENCY WASINGTON DC /9/
LESSONS LgARNED ON THE ROAD TO A MODERN PRORAMMING ENVIRON-EgTC(Ul

JAN "* A .J KRY9IEL

INCL.IF1.D N0

* -- - -'"....--lu

UNCLASS I F I Ld
SCURITY CLASSIFICATION OF THIS PAGE (Wen Date F-...d, riui1ct*Ik ,

REPORT DOCUMENTATION PAGE Lm I R&RLET1NO

I~~~~TN TILE(OdRutMt
.REPORT NUMBER T ACCESSION NO 3 RECIPIENT'S CATALOG NUMBER

1. TITLE (aind Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Lessons Learned on the Road Lo a
Rtodern Programming Environment Final

6. PERFORMING ORG. REPORT NUMBER

I. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(*)

Dr. Annette J. Krygiel N/A

I. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Defense Mapping Agency AREA & WORK UNIT NUMBERS

Directorate for Systems and Techniques

Advanced Technology Div. - Bldg 56, USNAVOBSY, Wash DC 20305

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Defense Mapping Agency 6 January 1982

Directorate for Systems and Techniques 13. NUMBER OFPAGES
< Advanced Technology Div. - Bldg 56, USNAVOBSY, Wash DC 20305 17

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report)

Defense Mapping Agency UNCLASSIFIED

Directorate for Systems and Techniques

Advanced Technology Division 15a. DECLASSIFICATION/DOWNGRADING

Bldg 56, USNAVOBSY, Wash DC 20305

16. DISTRIBUTION STATEMENT (of this Report)

for pub c a ii e LW
djat1bUjoa JS unlirnit.&

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Repor tj

& 18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and Identify by block number)

Modern Programming Environment

Software tools

Tools facility

Software engineering

20. ABSTRACT (?C =mtue an r "*', & Ite f ne ceawy ad identiY by block number)
'The problems of coping with increasing levels of automation in a large organi-

zation are formidible ones. Not the least of these is the organization's invest-
mnent in the computer software needed to deliver its products. The environment

in which the software is developed must be supportive, allowing rapid generation

L.J of; error-free and maintainable computer code which meets user requirements. De-

J fining the components which constitute this environment -- called a Modern

Lo 'rogramming Environment (MPE) -- is merely a first step. Constructing the -

(OVER)
OR"o jq 147 nO OF I NOV GSIS OBSOLETE UdNCLASSIFI ED /,.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

L. . . .

SECURITY CLA*mlPICATION OF THIS PAOU(WhD'P.

20. Cont inued:

environment and then ensuring the proper interaction of personnel with it must
atso be accomplished.

This paper discusses some of the steps that have already been taken by the
Defense Mapping Agency to proceed to an MPE and the lessons learned along the

way.

SR CD
. 4.

* SECURITY CLASSIFICATION OF' THIS PAGE('Whion Date Entered)

4

Acoe.,jzicr For

NTIJ13~-

DTIC TA.
Lessons Learned on the Road to a U, , TA
Modern Programming Envi ronment 3flfl b_

Annette J. Krygiel By-

Defense Mapping Agency Ava 11.:
Directorate for Systems and Techniques

Advanced Technology Division !Dizt so,
Bldg 56, U.S. Naval Observatory

Washington, D.C. 20305

Biographical Sketch

Dr. Annette Krygiel has been an employee of the Defense
Mapping Agency since 1963. She is presently a member of the
Advanced Technology Staff at the Headquarters where she directs
research and development activities to apply advanced computer
technology to the Agency's computer resources. This includes
applying automated tools and techniques to the actual process of
developing the Agency's software.

Dr. Krygiel has a B.S. in Mathematics from St. Louis Univer-
sity, and a M.S. and D. Sc. in Computer Science from Washington
University, St. Louis. She is a member of the Association for
Computing Machinery and the Institute for Electrical and Elec-
tronic Engineers.

Abstract

The problems of coping with increasing levels of automation
in a large organization are formidible ones. Not the least of
these is the organization's investment in the computer software
needed to deliver its products. The environment in which the
software is developed must be supportive, allowing rapid
generation of error-free and maintainable computer code which
meets user requirements. Defining the con, ,,rents which
constizute this environment -- called a Modern Programming
Environment (MPE) -- is merely a first step. Constructing the
environment and then ensuring the proper interaction of personnel
with it must also be accomplished.

This paper discusses some of the steps that have already
been taken by the Defense Mapping Agency to proceed to an MPE and

-1-

.Wr3-I-

01 V ?i1

the lessons learned along the way.

Introducti on

In 1979, when Mr. Owen Williams addressed this forum, he
provided insight into the Defense Mapping Agency's (DMA's) future
Mapping, Charting and Geodesy (MC&G) systems [1]. He described
the growing requirement to deal with MC&G sources of a digital
nature, such as GEOS-3 and LANDSAT, stressing the growing need to
produce mapping products in digital form, in support of advanced
weapons systems, such as terminally guided re-entry systems and
cruise missile. Indeed, DMA has passed the point where the bulk
of our products are conventional paper products; instead today
the majority of these products is in a digital form.

As a result of these requirements and trends, we have
escalated automation of the mapping and charting process, and are
constructing systems to accept source information in digital
form, exploit that information digitally, and output it as a
digital product. There are many processes which occur from the
point the source information arrives at our doors to the point
that the product exits. At points in between, we are building
large repositories of digital data for increased responsiveness
and flexibility. Many (if not all) of our processes are directly
supported by computer systems of varying levels of
sophistication. Therefore it is accurate to say that our
computer systems are needed to accomplish our mission, and our
dependence on them can only grow with increasing quantities and
varieties of digital data, both input to us, and produced by us.
Consequently it is also accurate to state that our software is
mission critical, and it is growing in cost, complexity and size.

This is a problem faced by many organizations, and
acknowledged within the Department of Defense to the point where
a major Software Technology Initiative is being constructed to
improve software productivity; Figure 1 illustrates the
motivation [2]. If the trends in software costs continue, they
will dominate the cost of automated systems. However another
troubling aspect is the growing complexity of the software. As
additional functions are performed by computers, the reliability
of the software becomes more important, but also more difficJlt
to attain. An example of growth is seen in Figure 2 which
derives from National Aeronautical and Space Administration data
on the U.S. manned space flight programs [3,4,5,6]. It required
about a million computer instructions to launch Mercury; however
it required about 40 million to support the Space Shuttle
operation. This reduced the number of personnel who were
required to participate in the launch operations.

-2-

In DMA, the growing software size and complexity is
reflected in a comparison of the DMA Aerospace Center (DMAAC)
active software inventory resident on the Center's mainframe
computers (Figure 3). Comparing active software programs in 1970
versus 1981 reveals an increase in number of programs (231 versus
916), and an increase of 40%, 49%, or 73% in average lines of
code per program (dependent on alternative views of the total
inventory of 916 programs).

In 1979 I delivered a paper here which described the tools
in development which are intended to increase the productivity of
all our DMA scientists who engage in software development, as
well as improve the software product itself [7]. These tools are
only one part of an entire environment which is necessary to
support a productive and disciplined approach to software
development. Today I want to share this broader perspective, and
discuss what we have learned in the process of introducing
software tools. I will also comment on where we are headed.

Definition of Modern Programming Environment

There are many ingredients or components constituting an
MPE. These include:

a methodology for software development based on the life
cycle

organizational standards and guidelines for software
development

computer system(s) hosting automated tools to facilitate the
development process

people trained in modern programming practices

management commitment to develop and sustain the environment

The life cycle approach acknowledges distinct phases in the
software development process, and incorporates the processes of
validation and verification of the products of each phase. These
phases are: requirements definition, which is the generation of
complete, consistent, and unambiguous specifications describing
what the software will do; design, which is a specification of
the software architecture, its control and data structures, its
components, and the interaction and communication between
components; coding, which states what the software must do in
terms of a foiiinlanguage intelligible to a computer; testing,
which exercises the code to ensure correctness; and maintenance
which includes updates to the software, including corrections,

-3-

modifications and enhancements.

Organizational standards and guidelines define the policies
establishing what rules will be followed when software is
developed. Examp es include guidelines to accomplish
requirements definition , i.e., formally or informally, whether a
team approach will be employed, and under what circumstances,
when structured walkthroughs will take place, etc.

An integrated tools facility Is the computer system(s) which
offers the automated support to develop software. There are
varying levels of this support, and most facilities are viewed as
evolutionary, proceeding from some minimum configuration to some
maximum configuration of hardware and software. Software
development tools are computer programs that aid the
specification, aesign, construction, analysis, documentation
maintenance, and management of other computer programs. These
tools Include those traditionally acknowledged, such as compilers
and editors, those recently developed, such as requirements
analyzers, and design aids, and those in research, such as formal
verification tools and programming environments [8].

People trained in modern programming practices are one of
the key ingredients to this environment. Among the factors which
influence software productivity, Boehm notes that people factors
dominate [5,6]. Modern programming practices include structured
programming, top down design, program library functions, use of
project teams, and structured walkthroughs.

A management commitment which sustains the people and
computer resources, as well as enforcement of standards.

Lesson No. 1: Take Time to Assemble All MPE Components!

One important observation about transitioning to a MPE is
this: it is a long process and all components must be sustained.
We note this as one of our first lessons learned.

Several years ago in our efforts to improve the production
environment, we developed for our Production Centers a few
support tools for the programming activities. One of these was a
tool to restructure conventional FORTRAN programs automatically
for easier maintenance. Later we developed some verification
tools to facilitate and improve the software testing process by
identifying more exhaustive test cases. Our experience with
these tools revealed that conversion onto our existing computer
facilities was difficult. Some tools were developed for
particular computer configurations, and they were not readily
portable. Also a tool would be appropriate for a particular TYPE

-4-

*- ' '
; --- -" *--~

of environment, and ill-suited for another, such as a tool
appropriate for an interactive environment, rather than batch.
While the functions the tools offered were useful, the tools were
difficult to exercise. And they were error-prone (partially due
to re-hosting), unfriendly, and the tools sometimes required an
unacceptable level of computer resources to exercise (partially
due to rehosting). Despite the expenditures of people, computer,
and fiscal resources, it became uncertain that a high payoff
would be derived, though there had been good anticipation at the
outset of their acquisition and installation.

Contributing to the difficulties was the lack of familiarity
with applying the tools (despite initial training) by our
personnel. Due to the time stretchout of introducing the tools,
those personnel that had been trained became mobile,
necessitating retraining. Due to the conversion time, resource
requirements and inexperienced personnel, management had to wait
patiently for tool evaluation results that were significantly
delayed. Then we suffered from not only inexperienced people,
and computer resources mismatched to the tools, but also the
erosion of our management commitment.

After finally developing and converting the tools, they
became generally available to the users, but we found the tools
were not frequently exercised because there were no programming
standards and guidelines which required their use. The lesson is
that it is not possible to create a MPE by quickly and simply
introducing a few select tools. All the ingredients of an MPE
are essential and must be sustained. Transitioning to an MPE
will require time and resources.

Lesson No. 2: Plan for Evolution!

An important second lesson is that there is a requirement
for a plan to proceed to an MPE which acknowledges distinct
phases. As stated, initial experience convinced us that
achieving an MPE was going to be a long process. (Incidentally
this is consistent with other large organizations that have
embarked on the same path.) Establishing standards, identifying
and acquiring the appropriate computer resources needed,
introducing a few mature tools and progressively building on
these capabilities is a good approach. Prioritizing the steps
and identifying and acquiring highpayoff tools and techniques
need to be clearly mapped out. This should be done at the outset
and reviewed along the way.

We accomplished a characterization of the existing DMA
programming environment and the development of a plan to tran-
sition to an MPE [9]. The principal recommendations were:

-5-

Establish programming standards and guidelines

Train DMA people in modern programming practices

Optimize existing computer resources

Establish quality assurance practices

Establish configuration control

Establish a software tools group

It is noteworthy that these recommendations include all
components of an MPE. Since this assessment, the Centers have
developed programming standards and guidelines. We're in the
process of acquiring more computer terminals to change the
programming environment from batch to interactive. We're
preparing the optimization of some softk, re programs which are
consistently large computer resource users. We've been training
our personnel in modern programming practices and software
engineering principles.

Lesson No. 3: Measure Something!

Once a plan is recognized, it is important to understand the
payoffs which can be realized from its implementation because
people, computer, and economic expenditures will be required.
The management commitment is jeopardized without this
understanding. Frequently tool acquisitions can provide a
function which is needed by an organization and cannot be
satisfied in any other manner. But tools and practices which
supply seemingly non-quantifiable improvement in software
performance, such as tools which generate better test cases, may
require justification. Evaluation of the impact of these tools
is expensive and difficult, and payoffs are not easy to establish
beyond dispute. This problem is plaguing the software industry.
To date we, and others, have relied on limited assessments of
performance improvements. This brings us to Lesson No. 3. It is
important to quantify software productivity improvements in the
environment today so that you can measure software productivity
progress tomorrow. Unfortunately much research remains to be
accomplished on software metrics. However there are at least
three approaches to this task today --extrapolate from the
experiences of others, use controlled experiments, and build data
bases for analysis.

While quantitative analyses of the benefits of certain

-6-

programming star iards and use of software tools are limited,
there are somk comprehensive experiments on large software data
bases which justify the use of MPEs. These results can be
extrapolated to a particular environment, and, assuming analogous
software development requirements, similar benefits can be
anticipated. This may constitute a reasonable first approach to
some kind of "measurement" of benefits.

Figure 4 is reproduced from a report by Barry Boehm on 63
software development projects [5,6]. It illustrates the high
leverage cost factors which influence software productivity. For
instance, applying modern programming practices can improve
performance by 51% and using software tools can improve it by
49%. These factors are cited by Boehm as "multiplicative",
indicating that if several factors are employed, benefits are
synergi stic.

Figure 5 is extracted from an extensive analysis performed
by Walston and Felix of IBM on 51 software development projects
[10]. Their assessment isolated the range in performance in
software development attributed to certain modern programming
practices. The three productivity columns indicate the
performance experienced (in terms of delivered source state-
ments per person month), when the technique was applied minimal-
ly, to an average extent, or extensively. That is, if none-to-
little structured programming were used, 169 source statements
were achieved per person month; , if extensive , structured
programming were applied, 301 source statements per person month
were achieved. There are significant improvements in
productivity attributed to use of all practices.

Another analysis was performed by Brooks using 48 of the 51
projects examined by Walston and Felix Ell]. Brooks was
interested in isolating the effects of structured programming,
and classified the 48 software projects into those which were
unstructured (0-10% of structured code); those that were
partially structured (11-89% of structured code); and those that
were fully structured (90-100% of structured code). Brooks also
distinguished the results on large versus small projects. The
conclusion reached was that for both large and small size
projects, structured code. apparently affects productivity
favorably. Under the conditions most adverse for software
development, such as extremely large size, extremely complex
projects etc, the ratio of the apparent gain in productivity
ranges from 200% to over 600%.

The use of experimental team(s), one employing a practice or
tool proposed for adoption and one(s) employing current practices
or no tool has also been used to measure productivity

-7-

improvements. This can be costly especially in a production
environment since twice the resources are expended to achieve a
single assignment. Also the validity of the results can
frequently be challenged since all factors are not necessarily
equal. For instance, an argument can be made that the results
are spurious since one team does not equal the other in skills
(note Boehm's assessment of the influence of personnel capability
on software productivity, earlier cited). If different projects
are assigned to avoid duplication of resources, the argument of
unequal tasks can be levied against results. However this
technique has been used, especially in academic circles.

Research conducted at the University of Maryland in the
nature of controlled experiments was performed to verify the
effectiveness of a particular programming methodology [12].
Specific software development tasks were replicated under varying
environments, and three distinct classes of developers were used,
i.e., individuals, three-person teams, and three person teams
using modern programming practices. Statistical analysis
resulted in the interpretation that a disciplined methodology
provides for a product at minimum cost, while the product itself
(the software developed) at its worst approximates the product
developed by an ad hoc team and in some respects resembles that
of the individual.

DMA employed the team approach at each Center to evaluate
the effects of modern programming practices and two tools, i.e.,
a Programming Support Library (PSL) and the FORTRAN Automatic
Verification System (FAVS). The report generated did not produce
conclusions using a statistical analysis, since sufficient data
collection was not achieved. Also extracurricular events
transpired during the course of the projects which affected the
progress. Each Center's project was ambitious, and employed four
person teams, including a Chief Programmer and Programming
Librarian. An expert advisor was also utilized as "overseer".
The conclusions reached were in the nature of a qualitative
assessment and were cited as [13]:

More maintainable software was developed

Better project control resulted

Less throw-away code resulted

FAVS faciliated logic reviews of code generated
and automatically detected unreachable code

PSL rehosting to DMA computers was detrimental

--8-

The creation of a data base to record expenditures of
resources on software development/maintenance seems an ultimate
step to measure improvements in productivity attributable to new
Dractices and tools. A number of organizations have proceeded to
this collection to support software cost estimating. (In order
to estimate accurately the resources required for new software
development, it is necessary to refer to the organization's
historical data base). Frequently such a collection tabulates
for each project the people and computer resources used in each
phase of the life cycle -- the requirements, design, etc. It is
possible to record what tools and practices were applied, project
constraints, etc. However the product resulting from the
project -- the software itself -- must be characterized in some
manner. The software industry has yet to develop a universally
accepted metric for its product, and there is much controversy on
this subject, and much research required to resolve this issue.
The use of delivered source instructions, or object instructions
per person month seems an interim compromise [5,6,10,11].

Lesson No. 4: Introduce Tools Carefully!

The benefits that can be anticipated from software tools
have already been discussed. Some insight into the difficulty of
introducing tools has already been gleaned. There are several
recommendations published as to methods for introducing tools
into an organization [5,6,14]. The DMA experience is discussed
here.

If possible, tools should be acquired only after some
hands-on experience by limited numbers of users from the
organization (again, the experimental use by a select team or
individual). This should be accomplished by lease or remote
access to sites hosting the tool. This avoids conversion costs
and time.

It is advantageous to schedule training, not just initially,
but over the entire experimental period. While the rudiments of
tools use can be readily assimilated, applying a tool for maximum
benefit is not so obvious, particularly when personnel have no
prior experience, or the environment for which the tool was
developed is different from that of the organization. We have
discovered that interactions with expert personnel who constantly
review the application of the tool is an extremely beneficial
approach.

The maturity of the tool for use in a production
organization is important. Unfriendly user interfaces,
conversion errors, etc. must be removed before granting access to
large numbers of users. Developmental tools can be exercised for

-9-

T1F

purposes of evaluating merit, or identifying modifications or
enhancements for later development. Introducing unfriendly tools
to large numbers of people is more detrimental than not providing
the tool. Users are "turned off". Reinstating the tool after
improvements is extremely difficult.

There is a need to assess or quantify the benefits of the
tools, and this has already been discussed under measurement.
Since resources will be required to train people in use of the
tool, to enable exercise of the tool, and to maintain the tool,
there must be some understanding of what is gained from its
implementation. This ensures the management commitment.

Lastly, a formal role must be assigned for a "toolsmith", an
individual or team responsible for the tool, and recognized as
such by the organization. This provides for the formal and
documented assessment of the tool, training for its application,
and responsibility for its maintenance.

The Future!

We have a series of activities on-going or imminent which
will take us to an MPE which has all the necessary components.
The development of standards and guidelines, the acquisition of
terminals, and optimization of computer resources have already
been discussed.

With respect to introduction of tools into the organization,
we are adopting the evolutionary approach. The FAVS tool, after
extensive pilot team exercise, is targeted for production use.
There is a counterpart to this tool which facilitates the testing
of COBOL programs -- the COBOL Automatic Verification System.
This is currently in development and is being exercised
remotely. The knowledge derived from the FAVS application is
being used so that we have every reason to believe that we will
be able to transition the tool quickly to production use.

Meantime we are re-validating the view of the DMA program-
ming environment in order to identify a minimum set of tools
which would support each phase of the software life cycle, that
is, a tool for requirements analysis, design, etc. Also included
will be a tool for project management. An initial candidate set
of tools has been exercised by individuals from each Center, and
that evaluation generated so as to converge to a final
recommended set. Then we shall proceed in accordance with Lesson
No. 4.

The Centers are preparing plans for the introduction of
tools into DMA, reviewing appropriate responsibilities for the

-10-

"toolsmith", and translating these into present organizational
functions.

In the longer term we shall initiate an analysis of
appropriate metrics to employ in our environment for quantifying
the software product. We also will identify the contents of a
database to facilitate our cost estimating and productivity
assessments. Where possible, we hope to accomplish data
collection automatically.

Summary

The lessons provided herein are in the nature of
conclusions, and provide an informal methodology for proceeding
to a programming environment. We feel our experiences have been
similar to those of other large organizations which have embarked
on this path. The goals to be reached are significant -- more
maintainable and error-free software, more productive
programmers, and improved software management.

Bibliography

1. Williams, Owen W., "Outlook on Future Mapping, Charting and
Geodesy Systems", Proceedings of the Technology Exchange Week,
May 1979, pp. 751-763.

2. Redwine, Jr., Samuel T., et al, "Candiate R&D Thrusts for the
Software Technology Initiative", May 1981.

3. Reifer, D. J., "Software Acquisition Planning for the DoD
Space Transportation System (Space Shuttle)," Proceedings of
AIAA/DPMA Third Software Management Conference, Washington, D.C.,
December 1977, pp. 81-90.

4. Stokes, J. C., "Managing the Developing of Large Software
Systems; Apollo Real-Time Control Center," Proceedings of WESCON
70, August 1970.

5. Boehm, Barry W., "Improving Software Productivity", COMPCON
Proceedings, Fall 1981, pp 2 -17.

6. Boehm, Barry W., "Software Engineering Economics",
Prentice-Hall, 1981.

7. Krygiel, Annette J. "The Application of Computer Software
and System Engineering Research to the Defense Mapping Agency",
Proceedings of the Technology Exchange Week, May 1979, pp.
110-127.

-11-

8. Houghton, Jr., Raymond C.,"Features of Software Development
Tools", National Bureau of Standards Special Publication 500-74,
February 1981.

9. Stucki, Leon; Brown, John; Hammond, Linda, "DMA Modern
Programming Environment Study", RADC-TR-79-343 Final Technical
Report, January 1980.

10. Walston, C.E. and Felix, C.P., "A Method of Programming
Measurement and Estimation", IBM Systems Journal, No. 1, 1977,
pp. 55-73.

11. Brooks, W. D., "Software Technology Payoff: Some
Statistical Evidence", IBM Software Engineering Exchange, Volume
2, No. 3, April 1980, pp. 2-7.

12. Basili, V. R.; Reiter, Jr.., R. W., "A Controlled Experiment
Quantitatively Comparing Software Development Approaches", IEEE
Transactions on Software Engineering, Volume SE-7, No. 3, May
1981, pp. 299-320.

13. Brittle, Emily, "DMAHTC Modern Programming Environment Pilot
Project Evaluation Report", 30 July 1981.

14. Hecht, Herbert, "Preliminary Draft Guidelines for the
Introduction of Software Tools Into a Programming Environment",
National Bureau of Standards Report, April 1981.

-12-

CqC
LUO

N0 < U

LU LJ

00
w *0 -

mLLI

w cm

o
OW ~z

0(

Lai

00

NLI 0 ,wC

-130

I~-7W

o -j

LL
4c4

Fiur 2

L.. 4c

-4 (n

LIj

-0-cc

Fiur 3

W iRAR.T V- SOFTWARE RO JCTI I TY RANGES 'IE 3 =-)

LANG. 1. 20
EXPER

HE .23

CO0N S. T R 1

DATA 1 23BASE i12

TURN
AROUND 1,.32

TIME A

VI RTUAL
MACHINE 1.34EZ2ERIENCE .

VIRTUAL

MACHINE 1,40
VOLATILITY

SOFT ',ARE SOFTWARE

C 0 S T TOOLS
DRIVER {
ATTRIBT MODERN PROG, 5

SPRACTICES 1.5

STORAGED I .
STE CONSTRAINT

,APPLICATIONS 1.57

.P REXPERT I NCE '

S TIMING 1.6
A CONSTRAT I CAT

REQU IREDRELIAB ILI TY87

R, PRODUCT COMPLEXITY 12 3
P PERSNN LDiTU AT CALAXILf' "''Y 2 ,

P E R .S0 N. N / MCA

SOFTWARE R C:J "T 7Y 'I

Figure 4

-16-

Ao C c

!,to.. 4.

IP N CV)

. ._.

I CY) Io% Cn CV)

co to

A~c C CDc C
6. N.

.,.-

'',0

2. E.C

C/) CD

1.Figure 5

